Testing for Slope Heterogeneity Bias in Panel Data Models∗

نویسندگان

  • Murillo Campello
  • Antonio F. Galvao
  • Ted Juhl
  • Suyong Song
  • Albert Wang
  • Zhijie Xiao
چکیده

Standard econometric methods can overlook individual heterogeneity in empirical work, generating inconsistent parameter estimates in panel data models. We propose the use of methods that allow researchers to easily identify, quantify, and address estimation issues arising from individual slope heterogeneity. We first characterize the bias in the standard fixed effects estimator when the true econometric model allows for heterogeneous slope coefficients. We then introduce a new test to check whether the fixed effects estimation is subject to heterogeneity bias. The procedure tests the population moment conditions required for fixed effects to consistently estimate the relevant parameters in the model. We establish the limiting distribution of the test, and show that it is very simple to implement in practice. We also generalize the test to allow for cross-section dependence in the errors and a form of endogeneity. Examining firm investment models to showcase our approach, we show that heterogeneity bias-robust methods identify cash flow as a more important driver of investment than previously reported. Our study demonstrates analytically, via simulations, and empirically the importance of carefully accounting for individual specific slope heterogeneity in drawing conclusions about economic behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Coe¢ cient Panel Data Models

This paper provides a review of linear panel data models with slope heterogeneity, introduces various types of random coe¢ cients models and suggests a common framework for dealing with them. It considers the fundamental issues of statistical inference of a random coe¢ cients formulation using both the sampling and Bayesian approaches. The paper also provides a review of heterogeneous dynamic p...

متن کامل

Random Coefficient Panel Data Models

Random Coefficient Panel Data Models This paper provides a review of linear panel data models with slope heterogeneity, introduces various types of random coefficients models and suggest a common framework for dealing with them. It considers the fundamental issues of statistical inference of a random coefficients formulation using both the sampling and Bayesian approaches. The paper also provid...

متن کامل

Spatial Correlation Testing for Errors in Panel Data Regression Model

To investigate the spatial error correlation in panel regression models, various statistical hypothesizes and testings have been proposed. This paper, within introduction to spatial panel data regression model, existence of spatial error correlation and random effects is investigated by a joint Lagrange Multiplier test, which simultaneously tests their existence. For this purpose, joint Lagrang...

متن کامل

Two-step estimation of panel data models with censored endogenous variables and selection bias

This paper presents some two-step estimators for a wide range of parametric panel data models with censored endogenous variables and sample selection bias. Our approach is to derive estimates of the unobserved heterogeneity responsible for the endogeneity/selection bias to include as additional explanatory variables in the primary equation. These are obtained through a decomposition of the redu...

متن کامل

Bias Corrections for Two-Step Fixed Effects Panel Data Estimators

This paper introduces bias-corrected estimators for nonlinear panel data models with both time invariant and time varying heterogeneity. These models include systems of equations with limited dependent variables and unobserved individual effects, and sample selection models with unobserved individual effects. Our two-step approach first estimates the reduced form by fixed effects procedures to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016